Role of Ca(2+) fluctuations in L6 myotubes in the regulation of the hexokinase II gene.

نویسندگان

  • A E Halseth
  • R M O'Doherty
  • R L Printz
  • D P Bracy
  • D K Granner
  • D H Wasserman
چکیده

Expression of the hexokinase (HK) II gene in skeletal muscle is upregulated by electrically stimulated muscle contraction and moderate-intensity exercise. However, the molecular mechanism by which this occurs is unknown. Alterations in intracellular Ca(2+) homeostasis accompany contraction and regulate gene expression in contracting skeletal muscle. Therefore, as a first step in understanding the exercise-induced increase in HK II, the ability of Ca(2+) to increase HK II mRNA was investigated in cultured skeletal muscle cells, namely L6 myotubes. Exposure of cells to the ionophore A-23187 resulted in an approximately threefold increase in HK II mRNA. Treatment of cells with the extracellular Ca(2+) chelator EGTA did not alter HK II mRNA, nor was it able to prevent the A-23187-induced increase. Treatment of cells with the intracellular Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM) also resulted in an approximately threefold increase in HK II mRNA in the absence of ionophore, which was similar to the increase in HK II mRNA induced by the combination of BAPTA-AM and A-23187. In summary, a rise in intracellular Ca(2+) is not necessary for the A-23187-induced increase in HK II mRNA, and increases in HK II mRNA occur in response to treatments that decrease intracellular Ca(2+) stores. Depletion of intracellular Ca(2+) stores may be one mechanism by which muscle contraction increases HK II mRNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient gene transfer into myotubes following differentiation in culture.

When grown under appropriate conditions, rat myoblasts (L6 cells) differentiate into skeletal muscle-like myotubes and provide a valuable cell culture model for the study of specific muscle gene regulation both during and following myogenic differentiation. Specific culture conditions are required for differentiation and fusion of these cells, including substrate attachment, cell confluence, an...

متن کامل

The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes

The di-peptide Trp-His (WH) has vasorelaxant and anti-atherosclerotic functions. We hypothesized that WH has multiple biological functions and may aid AMP-activated protein kinase (AMPK) activation and affect the glucose transport system in skeletal muscle. First, we examined whether WH or His-Trp (HW) can activate AMPKα. Treatment of L6 myotubes with WH or HW significantly increased phosphoryl...

متن کامل

Chicoric Acid Is an Antioxidant Molecule That Stimulates AMP Kinase Pathway in L6 Myotubes and Extends Lifespan in Caenorhabditis elegans

Chicoric acid (CA) is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans ...

متن کامل

GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity.

Dietary glucose is taken up by skeletal muscle through GLUT4 (glucose transporter 4). We recently identified by MS proteins displaying insulin-dependent co-precipitation with Myc-tagged GLUT4 from L6 myotubes, including GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and HKII (hexokinase-II). In the present paper we explored whether GAPDH and HKII interact directly with cytoplasmic regions of ...

متن کامل

Insulin stimulates glucose transporter 1 (GLUT1) and hexokinase II (HK II) gene expression in chicken skeletal muscle

Chickens have a blood glucose level that is twice as high as that in most mammals and are regarded as an insulin resistant animal. We previously reported that the major insulin responsive glucose transporter gene, GLUT4, is deficient in broiler chickens, therefore insulin regulation of blood glucose level in chickens is not well understood. In the present study, we characterized gene expression...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 2000